The Data Science & Big Data is a research Laboratory within the Federal University of Parana (UFPR). Situated at the intersection of the Department of Informatics (DINF) and the Department of Statistics (DEST), our collaborative initiative brings together researchers from both disciplines to push the boundaries of knowledge in many research areas, including Machine Learning, Deep Learning, Statistical Modeling, Hardware Prototyping, and Big Data streams processing.
processing large amounts of data on the edge.
This project aims to develop a framework for fault diagnosis in transmission lines through machine learning
Latest research
Almeida, P., Oliveira, L. S., Silva Jr, E., Britto Jr, A., Koerich, A., PKLot – A robust dataset for parking lot classification, Expert Systems with Applications, 42(11):4937-4949, 2015. (pdf)
Almeida, P. R. L., Alves, J. H., Oliveira, L. S., Hochuli, A. G., Fröhlich, J. V., & Krauel, R. A. Vehicle Occurrence-based Parking Space Detection. In 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). (pdf)
Ceschin, F., Botacin, M., Gomes, H. M., Pinagé, F., Oliveira, L. S., & Grégio, A. (2023). Fast & Furious: On the modelling of malware detection as an evolving data stream. Expert Systems with Applications, 212, 118590. (pdf)
Pena, E. H., de Almeida, E. C., & Naumann, F. (2021). Fast detection of denial constraint violations. Proceedings of the VLDB Endowment, 15(4), 859-871. (pdf)
Santos, S., Kepe, T. R., & Alves, M. A. Improved Computation of Database Operators via Vector Processing Near-Data. In 2023 IEEE 35th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). (pdf)
Ribas, M. E. M., Mendes, H. B., Oliveira, L. E. S., Zanlorensi, L. A., Almeida, P. R. L. Using Deep Neural Networks to Quantify Parking Dwell Time. In 2024 IEEE 23th International Conference on Machine Learning and Applications. (pdf)
Alves, P. L., Hochuli, A., Oliveira, L. E., Almeida, P. R. L. Optimizing Parking Space Classification: Distilling Ensembles into Lightweight Classifiers. In 2024 IEEE 23th International Conference on Machine Learning and Applications. (pdf)